Yenilenebilir Enerji Kaynakları-Alternatif Enerji

Yenilenebilir Enerji Kaynakları-Alternatif Enerji

Yenilenebilir Enerji Kaynakları

Güneş Enerjisi

Güneş dünyanın yörünge eksenine 1,366 watt/metre² enerji iletir, fakat yer yüzüne ulaşan enerji miktarı biraz daha azdır. Güneş enerjisi veya Güneş erkesi, Güneş ışığından enerji elde edilmesine dayalı teknolojidir. Güneşin yaydığı ve dünyamıza da ulaşan enerji, güneşin çekirdeğinde yer alan füzyon süreci ile açığa çıkan ışıma enerjisidir, güneşteki hidrojen gazının helyuma dönüşmesi şeklindeki füzyon sürecinden kaynaklanır. Dünya atmosferinin dışında güneş ışınımının şiddeti, aşağı yukarı sabit ve 1370 W/m2 değerindedir, ancak yeryüzünde 0-1100 W/m2 değerleri arasında değişim gösterir. Bu enerjinin dünyaya gelen küçük bir bölümü dahi, insanlığın mevcut enerji tüketiminden kat kat fazladır. Güneş enerjisinden yararlanma konusundaki çalışmalar özellikle 1970'lerden sonra hız kazanmış, güneş enerjisi sistemleri teknolojik olarak ilerleme ve maliyet bakımından düşme göstermiş, güneş enerjisi çevresel olarak temiz bir enerji kaynağı olarak kendini kabul ettirmiştir.

Güneş’ten Elde Edilebilecek Enerji

Dünyanın yörüngesi üzerinde, uzayda, birim alana ulaşan güneş ışınları, güneşe dik bir yüzey üzerinde ölçüldükleri zaman 1,366 W/m2’dir. Bu değer güneş enerjisi sabiti olarak da anılır.Atmosfer bu enerjinin %6’sını yansıtır, %16’sını da sönümler ve böylece deniz seviyesinde ulaşılabilen en yüksek güneş enerjisi 1,020 W/m2’dir. Bulutlar gelen ışımayı, yansıtma suretiyle yaklaşık %20, sönümleme suretiyle de yaklaşık %16 azaltırlar. Sağdaki resim 1991 ve 1993 yılları arasında uydu verilerine dayanarak, elde edilebilen ortalama güneş enerjisinin W/m2 cinsinden gösterimidir. Örneğin Kuzey Amerika’ya ulaşan güneş enerjisi 125 ile 375 W/m2 arasında değişirken, günlük elde edilebilen enerji miktarı, 3 ila 9 kWh/m2 arasında değişmektedir. Bu değer, elde edilebilecek mümkün en yüksek değer olup, güneş enerjisi teknolojisinin sağlayacağı en yüksek değer anlamına gelmez. Örneğin, fotovoltaik (güneş pili) panelleri, bugün için yaklaşık %15’lik bir verime sahiptirler. Bu nedenle, aynı bölgede bir güneş paneli, 19 ile 56 W/m2 ya da günlük 0.45-1.35 kWh/m2 enerji sağlayacaktır.Yandaki resimdeki koyu renkli alanlar, güneş paneli kaplanması durumunda aynı bölgede 2003 yılında üretilen toplam enerjiden biraz daha fazla enerji üretebilecek örnek alanları göstermektedir.Bugünkü %8 verime dayalı teknoloji ile dahi, işaretli bölgelere yerleştirilecek güneş panelleri, bugün fosil yakıtlar, hidroelektrik, nükleer vb kaynaklara dayalı tüm santrallerinürettiği elektrik enerjisinden biraz daha fazlasını üretebilecektir. Hava kirliliğinin neden olduğu Küresel loşluk ise daha az miktarda güneş
ışının yeryüzüne ulaşmasına neden olduğu için, güneş enerjisinin geleceği ile ilgili az da olsa endişe yaratmaktadır. 1961-90 yılları arasını kapsayan bir araştırmada, aynı dönem içerisinde deniz seviyesine ulaşan ortalama güneş ışını miktarında %4 azalma olduğu gözlenmiştir.
 

Güneş enerjisi teknolojileri: Güneş ışınlarından yararlanmak için pek çok teknoloji geliştirilmiştir. Bu teknolojilerin bir kısmı güneş enerjisini ışık ya da ısı enerjisi şeklinde direk olarak kullanırken, diğer teknolojiler güneş enerjisinden elektrik elde etmek şeklinde kullanılmaktadır.

Güneş Enerjili Isıtma Sistemleri
     
Düzlemsel Güneş kollektörleri: Ülkemizde de çok yaygın olarak kullanılan, evlerde sıcak su elde etmede kullanılan sistemlerdir.

Yoğunlaştırıcılı Güneş Enerjisi Santrallari: Bunlarda, doğrusal, çanak şeklinde ya da merkezi bir odağa yönlendirilmiş dev aynalar kullanılarak, odak noktasında çok yüksek sıcaklıkta ısı elde edilir. Genellikle elektrik üretiminde kullanılır. Ancak henüz bir yaygınlık kazanamamışlardır.

Vakum Tüplü Güneş Enerjisi Sistemleri: Vakum tüplü güneş enerjisi kolektörleri: iç içe geçmiş 2 adet silindirik cam tüpün ısı yolu ile birbirine bağlanması ve bu işlem sırasında arasındaki havanın alınması ile üretilir. Dış silindirik tüpün yüzeyine düşen Güneş ışınları aradaki havasız ortamdan geçerek iç kısımdaki silindirik tüpün yüzeyinde absorbe edilmesi ile çalışır. Arada madde olmadığından dolayı sadece ışıma ile ısınan sistem suyu dış hava sıcaklığından bağımsızdır.

Güneş Ocakları:Çanak şeklinde ya da kutu şeklinde güneş ısısını toplayan yapılardır. Gelişmekte olan ülkelerde daha yaygın kullanılır.

Trombe Duvarı: Sandviç şeklinde cam ve hava kanalları ile paketlenmiş bir pasif güneş enerjisi sitemidir. Güneş ışınları gün boyunca, duvarın altında ve üstünde yer alan hava geçiş boşluklarını tahrik ederek, doğal çevirim ile termal kütleyi ısıtırlar. Gece ise trombeduvarı biriktirdiği enerjiyi ışıma yolu ile yayar.

Geçişli Hava Paneli:Aktif güneş enerjili ısıtma ve havalandırma sistemidir. Termal güneş paneli gibi davranan, güneşe bakan delikli (perfore) bir duvardan oluşur. Panel, binanın havalandırma sistemine ön ısıtma uygular. Ucuz bir yöntemdir. %70’e kadar verime ulaşılabilir.Araştırmaya konu olmuş, ancak yaygınlaşamamış bazı ısıl güneş enerjisi teknolojieri:
Güneş Havuzları: Havuza atılan tuzların yardımı ile dip tarafta sıcaklık elde edilir. Bunlar daha çok deneysel sistemler olarak kalmışlar, bir yaygınlık gösterememişlerdir.
Güneş Bacaları: Bir binanın zemininde toplanan ısı, yüksek ve dar bir bacaya yönlendiğinde, bacada kurulu türbini çalıştırır. Bu da, deneysel aşamada kalmış güneş enerjisi türlerinden biridir.
Su Arıtma Sistemleri: Bunlar da bir çeşit havuz sistemidir. Havuzun üstüne eğimli cam kapak yerleştirilir, buharlaşan su tuzdan arınarak bu kapakta yoğunlaşır.
Ürün kurutma sistemleri


Güneş Pilleri

Güneş pilleri ya da fotovoltaik piller diye anılan cihazlar, yarıiletkenlerin fotovoltaik etki özelliğini kullanarak, güneş ışığından elektrik enerjisi üretirler. Güneş pilleri, kurulan sisteme bağlı olarak birkaç mW'dan birkaç MW'a kadar elektrik üretebilir. Yüksek üretim maliyetleri nedeniyle, yakın zamana kadar oldukça az kullanılmıştır. 1950'lerden bu yana uzayda uydularda, 1970'li yıllarda, elektrik hattından uzak yerlerde, yol kenarlarındaki acil telefon cihazları ya da uzaktan algılama gibi uygulamaların enerji gereksiniminin karşılanmasında kullanılmıştır. Son yıllarda, evlerde elektrik şebekesi ile birlikte çalışan sistemler de yaygınlaşmıştır. 2005 sonu itibarı ile toplam 5,300 MW olduğu zannedilen kurulu güneş pili kapasitesinin, gelişmiş ülkelerin, güneş pillerinin evsel amaçlı kullanımına verdiği teşvikler nedeniyle, 2006 yılında da ciddi artış göstermesi beklenmektedir. Gerek kullanımdaki artış, gerekse teknolojik gelişmeler nedeniyle güneş pillerinin üretim maliyetinde her yıl azalış görülmektedir. Bir güneş pili panelinin watt başına maliyeti 1990 yılında yaklaşık 7,5 USD iken, 2005 yıllında bu rakam yaklaşık 4 USD seviyesine inmiştir. Gelişmiş ülkelerin sunmuş olduğu teşvikler, güneş pillerinin yatırım maliyetinin 5 ile 10 yıl arasında geri dönebilmesini sağlamaktadır. Evsel amaçlı kullanılan güneş pilleri bir inverter aracılığı ile elektrik şebekesine bağlanmakta, böylece üretilen elektriğin akülerde depolanmasından tasarruf edilmektedir. 2003 yılı içerisinde tüm dünyada gerçekleşen güneş pili üretiminde %32'lik bir artış gözlenmiştir.


Hidrojen Enerjisi

Dünyanın giderek artan enerji gereksinimini çevreyi kirletmeden ve sürdürülebilir olarak sağlayabilecek en ileri teknolojinin hidrojen enerji sistemi olduğu bugün bütün bilim adamlarınca kabul edilmektedir.
  Hidrojen enerjisinin insan ve çevre sağlığını tehdit edecek bir etkisi yoktur. Kömür, doğalgaz gibi fosil kaynakların yanı sıra sudan ve biokütleden de elde edilen hidrojen, enerji kaynağından çok bir enerji taşıyıcısı olarak düşünülmektedir. Elektriğe 20. yüzyılın enerji taşıyıcısı, hidrojene 21. yüzyılın enerji taşıyıcısı diyen çevreler vardır. Hidrojen yerel olarak üretimi mümkün, kolayca ve güvenli olarak her yere taşınabilen, taşınması sırasında az enerji kaybı olan, ulaşım araçlarından ısınmaya, sanayiden mutfaklarımıza kadar her alanda yararlanacağımız bir enerji sistemidir.
Hidrojen içten yanmalı motorlarda doğrudan kullanımının yanı sıra katalitik yüzeylerde alevsiz yanmaya da uygun bir yakıttır. Ancak dünyadaki gelişim hidrojeninin yakıt olarak kullanıldığı yakıt pili teknolojisi doğrultusundadır.
1950'lerin sonlarında, NASA tarafından uzay çalışmalarında kullanılmaya başlayan yakıt pilleri, son yıllarda özellikle ulaştırma sektörü başta olmak üzere sanayi ve hizmet sektörlerinde başarı ile kullanıma sunulmuştur. Yakıt pilleri, taşınabilir bilgisayarlar, cep telefonları gibi mobil uygulamalar için kullanılabildiği gibi elektrik santralleri için de uygun güç sağlayıcılardır. Yüksek verimlilikleri ve düşük emisyonları nedeniyle, ulaşım sektöründe de geniş kullanım alanı bulmuşlardır.

Hidrojen Üretimi
Hidrojen enerji sisteminin yeni olmasına karşın hidrojen üretimi yeni değildir. Şu anda dünyada her yıl 500 milyar m3 hidrojen üretilmekte, depolanmakta, taşınmakta ve kullanılmaktadır. En büyük kullanıcı payına kimya sanayi, özellikle petrokimya sanayi sahiptir. Ülkemizde Suni Gübre Sanayi (25.000m3), bitkisel yağ (margarin) üretimi (16.000m3), petrol arıtım evleri (rafineri) (1.200m3), petrokimya endüstrisi (30.000m3), hidrojene hayvansal yağ üretimi (200-300m3) ve çeşitli yerlerde kullanılmak üzere basınçlı silindirlerde gaz veya sıvı hidrojen üretimi (6.000m3) sadece sanayide kullanılmak üzere yapılmaktadır. Enerji üretimi amacıyla ticari boyutlu hidrojen üretimi mevcut değildir. Hidrojenin üretim kaynakları bol ve çeşitlidir. Fosil yakıtlardan elde edilebildiği gibi güneş, rüzgâr, hidrolik enerji gibi yenilenebilir enerji kaynaklarının kullanılması ile suyun elektrolizi yolu ile üretimi, biokütleden üretimi ve biyolojik süreçlerle üretimi mümkündür. Günümüzde hidrojen ağırlıklı olarak doğal gazdan buhar reformasyonu sonucu elde edilmektedir. Suyun elektrolizi bilinen bir yöntem olmakla beraber ekonomik hale getirilmesi konusunda çalışmalar, gene benzer şekilde güneş enerjisinden biyoteknolojik yöntemlerle hidrojen üretimi konusunda araştırma-geliştirme çalışmaları devam etmektedir.

Hidrojen Depolanması
Hidrojenin belki de en önemli özelliği, depolanabilir olmasıdır. Bilindiği gibi, günümüzde büyük tutarlarda enerji depolamak için hala uygun bir yöntem bulunmuş değildir. Eğer bugün hidroelektrik santrallerinden elde edilen enerjinin depolanması mümkün olsaydı, enerji sorununu bir ölçüde çözmek mümkün olabilirdi. Ancak, elektrik enerjisi için bilinen en iyi depolama yöntemi hala asitli akümülatörlerden başka bir şey değildir. Hidrojen gaz veya sıvı olarak saf halde tanklarda depolanabileceği gibi, fiziksel olarak karbon nanotüplerde veya kimyasal olarak hidrür şeklinde depolanabilmektedir. Hidrojen uygun nitelikli çelik tanklarda gaz veya sıvı olarak depolanabilir. Ancak gaz olarak depolamada yüksek basınç nedeniyle tank ağırlıkları problem yaratmaktadır. Hidrojen gazını depolamanın belki de en ucuz yöntemi, doğal gaza benzer şekilde yer altında, tükenmiş petrol veya doğal gaz rezervuarlarında depolamaktır. Maliyeti biraz yüksek olan bir depolama şekli ise, maden ocaklarındaki mağaralarda saklamaktır. Hidrojen petrole göre 4 kat fazla hacim kaplar; hidrojenin kapladığı hacmi küçültmek için hidrojeni sıvı halde depolamak gereklidir. Bunun için de yüksek basınç ve soğutma işlemine ihtiyaç vardır. Sıvılaştırılmış hidrojen yüksek basınç altında çelik tüpler içinde depolanabilir. Bu yöntem orta veya küçük ölçekte depolama için en çok kullanılan yöntemdir. Ancak büyük miktarlar için oldukça pahalı bir yöntemdir. Çünkü hidrojen enerjisinin yaklaşık ¼'ü sıvılaştırma işlemi için harcanmalıdır. Bir diğer pratik çözüm ise, sıvı hidrojenin düşük sıcaklıktaki tanklarda saklanmasıdır. Uzay programlarında, roket yakıtı olarak sürekli şekilde kullanılan sıvı hidrojen bu yöntemle depolanmaktadır. Dünyadaki en büyük sıvı hidrojen tankı, Kennedy Uzay Merkezinde olup 3400 m3 sıvı hidrojen alabilmektedir. Bu miktar hidrojenin yakıt olarak değeri 29 milyon Mega Jule veya 8 milyon kW-saat'e karşılık gelmektedir. Son yıllarda yapılan çalışmalar sonucu hidrojen karbon nanotüplerde de depolanabilmektedir. Karbon nanotüpler kısaca grafit tabakaların tüp şekline dönüşmüş halidir. Çapları birkaç nanometre veya 10-20 nanometre mertebesinde, boyları ise mikron seviyesindedir.
Hidrojen kimyasal olarak metallerde, alaşımlarda ve ara metallerde hidrür olarak depolanabilmektedir. Metal hidrürler hidrojen depolamak için çok uygun bir yöntem olmasına karşın, kendi ağırlıkları ciddi sorun olarak ortaya çıkmaktadır. Özellikle son 10 yıldır yüksek depolama kapasiteleri nedeniyle alüminyum ve bor içeren karmaşık hidrürler yoğun olarak çalışılmaktadır. Bor içeren karmaşık hidrürler sıvı koşullarda kullanılması nedeni ile de önem taşımaktadır. Bor esaslı sistemler ana olarak sodyum bor hidrürü esas almaktadır. NaBH4, katı halde ağırlıkça %10,5 hidrojen içermektedir. Çözelti halinde, sodyum bor hidrür, aşağıdaki reaksiyona göre hidrojenini vermekte ve sodyum metaborata dönüşmektedir.(katalizor)
NaBH4(s)+H2O—>4H2 + NaBO2
H2O ve NaOH ilavesi ile sodyum bor hidrürün sıvı içerisindeki miktarı ağırlıkça %20-35 arasında olabilmekte, bu da sistemde ağırlıkça % 4.4-7.7 arasında hidrojenin depolanmasına olanak vermektedir. Sodyum bor hidrürde hidrojen depolamanın en önemli üstünlüğü depolanan hidrojenin oda sıcaklığında geri alınabilmesi ve geri alımın katalizör yardımı ile kolaylıkla kontrol edilebilmesidir. Sodyum bor hidrürün hidrojen amaçlı kullanımında en önemli darboğaz, oluşan metaboratın tekrar NaBH4 dönüştürülmesidir.

Hidrojenin Taşınması
Hidrojen gazı, doğal gaz veya hava gazına benzer olarak borular aracılıyla her yere kolaylıkla ve güvenli olarak taşınabilmektedir. Hidrojen boru ile taşınmasına, Texas'da petrol sanayi tarafından kullanılmakta olan ve 80 km uzunluğuna sahip boru şebekesi ile Almanya'da Ruhr havzasında 1938 yılında işletmeye açılan ve bugün 15 atmosfer basınç altında hidrojen taşımaya devam eden 204 km'lik boru hattı örnek olarak gösterilebilir.
Basınçlı hidrojenin, çelik tüpler içine yerleştirerek taşınması, bu güne kadar geliştiren bir çok deneme amaçlı hidrojenle çalışan taşıtta kullanılan yöntem olmuştur. Burada görülen en büyük sorun çelik tüplerin kendi ağırlıklarıdır. Benzinli bir otomobil ortalama olarak 65 litre (47kg) benzin almakta olup, bu da enerji olarak 17 kg hidrojene karşılık gelmektedir. Hidrojeni sıvı olarak depolamak ağırlık sorununu çözmekle birlikte, tank hacmi ve maliyet artmaktadır. Diğer bir sorun ise, hidrojenin gaz haline geçmesi ile oluşan kayıplar ve yakıt ikmali zorluğudur.

Yakıt Pilleri
Yakıt pilleri, temiz, çevreye zarar vermeyen ve yüksek verime sahip enerji dönüşüm teknolojileridir. Bir buhar kazanı veya türbin kullanılmadan, sadece kimyasal reaksiyon ile elektrik enerjisi üretilir. Hidrojen (H2) ve oksijen (O2) arasındaki elektrokimyasal reaksiyon ile elde edilen ve toplam verimlilikleri % 80'lere kadar ulaşabilen yakıt pilleri, sürekli çalışan piller veya elektrokimyasal makinalar olarak da bilinir. Yakıt pilleri, bünyesinde kullanılan elektrolitin cinsine göre çeşitli isimler alır:
-Fosforik asit yakıt pili
-Katı oksit yakıt pili
-Erimiş karbonat yakıt pili
-Polimer elektrolit yakıt pili(PEM)
-Alkali yakıt pili
Her nekadar çalışma prensipleri benzer olsa da, çalışma koşulları ve uygulama alanları farklılık göstermektedir. Tablo 1'de yakıt pili çeşitlerinin temel özellikleri verilmiştir. Atık olarak su ve ısı elde edilmesi ve özellikle minimum seviyedeki emisyonları yakıt pillerini avantajlıkılar. İçten yanmalı motorlarda, toplam kontrol edilemeyen emisyonlar 2370 ppm, gaz türbinli sistemlerde 120 ppm olduğu halde, yakıt hücreli sistemlerde sadece 5 ppm'dir.
Yakıt pilleri, boyutlarının küçük olması, yüksek verimle çalışmaları ve atık ısılarının kullanılabilir olmasının yanısıra aşağıdaki özellikleri nedeniyle de diğer güç sistemlerine göre daha üstündürler:
-Modüler olmaları
-Kullanıcıya yakın inşaa edilebilmeleri
-Yakıt olarak saf hidrojenin yanısıra doğal gaz, metanol veya kömür gazlarının kullanılabilmesi
-Sessiz çalışmaları
-Minimum seviyede kükürt oksit ve azot oksit emisyonları->İnşa edilecek alanda çok az çevre kısıtlamaları gerektirmeleri ve kısa sürede inşaa edilebilmeleri
-Katı atık problemlerinin olmaması
1839'da keşfedilmiş, 1932'de üzerinde gelişmeler sağlanmış ve 1952 yılında NASA tarafından uzay çalışmalarında enerji sağlayıcı olarak kullanılan yakıt pilleri, 1960'lı yıllarda ilk yakıt hücreli traktör yapımı ile kara ulaşımında kullanıma sunulmuş 1980'li yıllarda yakıt hücreli tren, 1990'lı yıllarda yakıt hücreli denizaltı ve uçak ile gelişim göstermiş son yıllarda kara araçlarında ve güç santrallarında
yaygın araştırma ve uygulama konusudur.

Rüzgar Enerjisi

Rüzgâr Enerjisi nasıl bir yerden gelir?
Tüm yenilebilir enerji türleri (gelgit enerjisi ve jeotermal hariç) ve fosil yakıt enerjisi dahi sonuç olarak güneşten kaynaklanır. Güneş yeryüzüne saatte 100.000.000.000.000 KW enerji gönderir. Başka deyişle yeryüzü, 10 üzeri 18 watt kadar güç kazanır. Güneşten gelen enerjinin %1-2'si rüzgâr enerjisine dönüşür. Bu, yeryüzündeki tüm bitkilerin biyolojik kütleye dönüştürdüğü enerjinin 50 – 100 katıdır.
Ekvator çizgisi yakınındaki bölgeler dünyanın diğer bölgelerine göre daha fazla ısınır. Bu sıcak bölgeler, kızıl ötesi fotoğraflarda sıcak renklerle (karalarda kırmızı, turuncu ve deniz yüzeyinde sarı) görünür. Sıcak hava soğuk havadan hafiftir ve yaklaşık 10km'ye ulaşıncaya kadar gökyüzüne yükselir. Bu sıcak hava kütlesi hareket ederek Kuzey ve Güney Kutbuna yaklaşınca aşağı çöker ve ekvatora geri döner.

Coriolis Kuvveti
Dünya döndüğü için kuzey yarıküre üzerindeki her hareket, kendi konumumuza göre sağa doğru (güney yarıküre için sola) yönelir. Bu belirgin bükücü kuvvet Coriolis Kuvveti (Coriolis Force) olarak bilinir. Bu kuvveti keşfeden Fransız Matematikçi Gustave Gaspard Coriolis'in ismiyle anılmaktadır (1792 – 1843).
Kuzey yarıküre üzerinde hareket eden bir parçacığın sağa doğru döneceği pek açık görünmeyebilir. Bu olayı şöyle canlandırabiliriz:
Uç kısmı güneye doğru hareket eden bir koni düşünün ve dünyanın döndüğü gerçeğini de eklersek, koninin sanki sağa doğru kaydığını görürüz. Coriolis Kuvveti gözle görülebilir bir olaydır. Tren yolu hatlarının bir tarafı diğerinden daha hızlı aşınır. Nehir yataklarının bir tarafı diğerinden daha derine iner (hangi taraf olduğu bulunduğumuz yarıküreye bağlıdır ve kuzey yarıkürede hareket eden bir parçacıklar sağa yönelir).
Kuzey yarıkürede rüzgâr, bir alçak basınç alanına yaklaştıkça saat yönüne ters yön alır. Güney yarıkürede ise rüzgâr, alçak basınç alanları etrafında saat yönünde döner.

Neden Rüzgâr Enerjisi?
-Rüzgâr enerjisi temizdir.Rüzgâr türbinlerinden herhangi bir çevre kirliliği olmaz.
-Rüzgâr enerjisi yoğundur.Rüzgârdaki enerji gerçekten de sürdürülebilir bir kaynaktır. Rüzgâr hiç bitmeyen bir şeydir.
-Rüzgâr enerjisi, rüzgârı oluşturan hava akımının sahip olduğu hareket (kinetik) enerjisidir. Bu enerjinin bir bölümü yararlı olan mekanik veya elektrik enerjisine dönüştürülebilir.
-Fosil, nükleer ve diğer yöntemlerde atmosfere zararlı gazlar salınmakta, bu gazlar havayı ve suyu kirletmektedir. Rüzgârdan enerji elde edilmesi sırasında ise bu zararlı gazların hiçbiri atmosfere salınmaz, dolayısıyla rüzgâr enerjisi temiz bir enerjidir, yarattığı tek kirlilik gürültüdür.Pervanelerin dönerken çıkardığı sesler günümüzde büyük ölçüde azaltılmıştır.

Dünyadaki Durum
Rüzgâr gücü, dünyada kullanımı en çok artan yenilenebilir enerji kaynaklarından biri haline gelmiştir. Günümüzde dünyadaki kullanım oranının çok düşük olmasına karşılık, 2020 yılında dünya elektrik talebinin %12'sinin rüzgâr enerjisinden karşılanması için çalışmalar yapılmaktadır. Günümüzde rüzgâr enerjisinden üretilen toplam güç 40.301 MW civarındadır. Bu güçten en fazla yararlanan ülke % 36,3'lük payıyla Almanya'dır. Almanya toplamda 14.612 MW güç üretmektedir ve Almanya'nın elektrik enerjisi ihtiyacının % 5,6'sını karşılamaktadır. Rüzgâr gücünden en çok yararlanan diğer ülkeler sırasıyla İspanya, ABD, Danimarka, Hindistan, Hollanda, İtalya, Japonya, Birleşik Krallık ve Çin'dir. Diğer tüm ülkeler toplamda 3.756 MW' lık güç üretimi ile % 9,3 paya sahiptirler.

Üstünlükleri
-Atmosferi kirletici etkiye sahip gazların salınmaması
-Temiz bir enerji kaynağı olması
-Kaynağının tükenmemesi (güneş, dünya ve atmosfer olduğu sürece)
-Rüzgâr tesislerinin kurulumu ve işletilmesinin diğer tesislere göre daha kolay olması
-Enerji üretim maliyetlerinin düşük olması
-Güvenilirliğinin artması
 -Bölgesel olması ve dolayısıyla kişilerin kendi elektriğini üretebilmesi


Sakıncaları
-Rüzgârın sürekliliği olmadığı için enerji üretim değerinin sabit olmaması
-Rüzgâr türbinlerinin büyük alan kaplaması
-Gürültü kirliliği oluşturması
-Fosil ve nükleer yakıtlardan elde edilen enerjiye oranla enerji üretiminin düşük olması
-Yatırım maliyetlerinin yüksek olması
-Kullanım ömrü dolan kompozit parçaların doğada geri dönüştürülmesinin mümkün olmaması

Jeotermal Enerji

Jeotermal (jeo-yer, termal-ısı anlamına gelir) yerkabuğunun çeşitli derinliklerinde birikmiş ısının oluşturduğu, kimyasallar içeren sıcak su, buhar ve gazlardır. Jeotermal Enerji de bu jeotermal kaynaklardan ve bunların oluşturduğu enerjiden doğrudan veya dolaylı yollardan faydalanmayı kapsamaktadır.
Jeotermal enerji yeni, yenilenebilir, sürdürülebilir, tükenmez, ucuz, güvenilir, çevre dostu, yerli ve yeşil bir enerji türüdür.

Uygulama ve Değerlendirme Alanları
I. Elektrik enerjisi üretimi
II. Merkezi ısıtma, merkezi soğutma, sera ısıtması ve benzeri ısıtma/soğutma uygulamaları
III.Proses ısısı temini, kurutma işlemleri gibi endüstriyel amaçlı kullanımlar
IV.Karbondioksit, gübre, lityum, ağır su, hidrojen gibi kimyasal maddelerin ve minerallerin üretimi
V.Termal turizm'de kaplıca amaçlı kullanım
VI.Düşük sıcaklıklarda (30 °C'ye kadar) kültür balıkçılığı
VII.Mineraller içeren içme suyu üretimi

Yenilenebilir, sürdürülebilir, tükenmez bir enerji kaynağı olması; Türkiye gibi jeotermal enerji açısından şanslı ülkeler için bir özkaynak teşkil etmesi; temiz ve çevre dostu olması; yanma teknolojisi kullanılmadığı için sıfıra yakın emisyona sebebiyet vermesi; konutlarda, tarımda, endüstride, sera ısıtmasında ve benzeri alanlarda çok amaçlı ısıtma uygulamaları için ideal şartlar sunması; rüzgar, yağmur, güneş gibi meteoroloji şartlarından bağımsız olması; kullanıma hazır niteliği; fosil enerji veya diğer enerji kaynaklarına göre çok daha ucuz olması; arama kuyularının doğrudan üretim tesislerine ve bazen de reenjeksiyon alanlarına dönüştürülebilmesi; yangın, patlana, zehirleme gibi risk faktörleri taşımadığından güvenilir olması; % 95'in üzerinde verimlilik sağlaması; diğer enerji türleri üretiminin (hidroelektrik, güneş, rüzgar, fosil enerji) aksine tesis alanı ihtiyacının asgari düzeylerde kalması; yerel niteliği nedeniyle ithalinin ve ihracının uluslararası konjonktür, krizler, savaşlar gibi faktörlerden etkilenmemesi; konutlara fuel-oil, mazot, kömür, odun taşınması gibi problematikler içermediği için yerleşim alanlarında kullanımının rahatlığı; gibi nedenlerle büyük avantajlar sağlamaktadır.
Yağmur, kar, deniz ve magma sularının yeraltındaki gözenekli ve çatlaklı kayaç kütlelerini besleyerek oluşturdukları jeotermal rezervuarlar, yeraltı ve reenjeksiyon koşulları devam ettiği müddetçe yenilenebilir ve sürdürülebilir özelliklerini korurlar. Kısa süreli atmosfer koşullarından etkilenmezler. Reenjeksiyon, jeotermal rezervuarlardan yapılan sondajlı üretimlerde jeotermal akışkanın çevreye atılmaması ve rezervuarı beslemesi bakımından, işlevi tamamlandıktan sonra tekrar yeraltına gönderilmesi işlemidir. Reenjeksiyon birçok ülkede yasalarla zorunlu hale getirilmiştir.

Türkiye'de jeotermal enerji kaynakları ve kullanımı
Türkiye'de jeotermal enerji tespitine ve bu enerjinin kullanımına dönük çalışmalar özellikle İzmir ve Ege Bölgesi'nin bazı diğer noktalarında ilerlemiştir. İzmir'in Balçova ve Narlıdere ilçelerinde halen yaklaşık 15 bin konut jeotermal enerji ile ısıtılmaktadır.Seferihisar, Dikili, Bergama, Çeşme, Aliağa, Urla, Güzelbahçe, Bayındır, Menderes ve Kemalpaşa ilçelerinde de varlığı bilinen jeotermal kaynaklarının kullanılması halinde, sadece İzmir Büyükşehir Belediyesi sınırları içinde 220 bin konutu ısıtabilecek kapasiteye ulaşılabileceği hesaplanmaktadır. Ancak atılan adımlar (İzmir Jeotermal A.Ş. gibi) doğalgaz dağıtım çalışmalarına kıyasla daha yavaş yürümekte, resmi enerji politikalarının doğalgaza zorlayıcı etki yaratan düzenlemeleri de devreye girdiğinde, jeotermal enerji altyapı çalışmalarını caydırıcı unsurlar giderek belirginleşmektedir. Dış etkenlere bağımlılıkla eşdeğer doğalgaz kullanımını asgariye indirerek, teknolojisi ve insan kaynakları halihazırda mevcut yerli jeotermal enerjinin ön plana çıkarılmasına yönelik çabalar pek çok ilgili çevre tarafından ısrarla sürdürülmektedir. Bu bağlamda, yıllardır Jeotermal Yasası (Teklif) çıkarılmasına uğraşılmaktadır. Ülke koşullarına uygun, sahaların bütünlüğünü koruyan bir yasa teklifi  İzmir MMO ve İzmir Valiliği katkılarıyla hazırlanmıştır.
 


Dalga Enerjisi

Okyanus veya denizler gibi büyük su kütlelerinde meydana gelen dalgaların enerjisinden yararlanabilmektir. Yenilenebilir enerji formlarından bir tanesidir.

Üretilmesindeki zorluklar:
*Dalgaların yüksek gücüne karşın düşük hızlarda ve farklı yönlerde hareket etmesi
*En güçlü fırtınalara ve tuzlu suyun neden olacağı paslanmaya dayanabilecek yapıların yüksek maliyeti
*Kurulum ve bakım giderlerinin yüksekliğidir.
Dalga enerjisinin toplam enerji potansiyeli, toplam enerji büyüklüğü 2.5 terawat olarak hesaplanan gel-git enerjisinden çok daha fazladır. Sahilleri güçlü rüzgarlara maruz kalan ülkeler, enerji ihtiyaçlarının %5 veya daha fazlasını dalga enerjisinden karşılayabilirler.

Gel-Git Enerjisi

Gel-git veya okyanus akıntısı nedeniyle yer değiştiren su kütlelerinin sahip olduğu kinetik veya potansiyel enerjinin elektrik enerjisine dönüştürülmesidir.Gel-git enerjisini elektriğe dönüştürmek için yaygın olarak, uygun bulunan koyların ağzının bir barajla kapatılarak, gelen suyun tutulması, çekilme sonrasında da yükseklik farkından yararlanılarak türbinler aracılığı ile elektrik üretilmesi hedeflenir.24.8 Saate bir tekrarlanan gel-git hareketleri, düzenli bir enerji kaynağı olması açısından ilginç olmakla birlikte, enerji üretim süresinin 6-12 saatle kısıtlı olması bir dezavantaj yaratmaktadır. Suyun potansiyel enerjisinin %80'ini elektrik enerjisine dönüştürebilen gel-git enerjisi, güneş enerjisi gibi diğer alternatif enerji kaynaklarına göre daha yüksek bir verimliliğe sahiptir.
Deniz ve okyanuslardaki düzenli akıntıların kinetik enerjisinin, deniz tabanına yerleştirilen türbinler aracılığı ile elektrik enerjisine dönüştürülmesi
akıntı enerjisi olarak anılır.


Nükleer Enerji

Nükleer Enerji Nedir?
Atom çekirdeklerinin parçalanması sonucunda büyük bir enerji açığa çıkmaktadır. Ağır atom çekirdeklerinin nötronlarla bombardımanı sonucunda bu çekirdeklerin parçalanması sağlanabilir; bu tepkimeye "fisyon" adı verilmektedir. Her bir parçalanma tepkimesi sonucunda açığa fisyon ürünleri, enerji ve 2-3 adet de nötron çıkmaktadır.Uygun şekilde tasarlanan bir sistemde tepkime sonucu açığa çıkan nötronlar da kullanılarak parçalanma tepkimesinin sürekliliği sağlanabilir(zincirleme tepkime).
Bunun haricinde hafif atom çekirdeklerinin birleşme tepkimeleri de büyük bir enerjinin açığa çıkmasına sebep olmaktadır. Bu birleşme tepkimesine "füzyon" adı verilmektedir.Bu tepkimenin sağlanabilmesi için atom çekirdeğinde bulunan artı yüklerin birbirini itmesinden kaynaklanan kuvvetin yenilmesi gereklidir. Bu nedenle çok yüksek sıcaklığa çıkılan sistemler kullanılmaktadır.
Çok yüksek sıcaklıkta yüksek enerjiye ulaşan atom çekirdeklerinin çarpışması ile füzyon tepkimesi sağlanabilmektedir. Fisyon ve füzyon tepkimeleri ile elde edilen enerjiye "çekirdek enerjisi" veya "nükleer enerji" adı verilmektedir.

Nükleer Enerjiden Elektrik Üretimi
Nükleer reaktörler nükleer enerjiyi elektrik enerjisine dönüştüren sistemlerdir. Temel olarak fisyon sonucu açığa çıkan nükleer enerji nükleer yakıt ve diğer malzemeler içerisinde ısı enerjisine dönüşür. Bu ısı enerjisi bir soğutucu vasıtasıyla çekilerek bazı sistemlerde doğrudan bazı sistemlerde ise ısı enerjisini başka bir taşıyıcı ortama aktararak türbin sisteminde kinetik enerjiye ve daha sonra da jeneratör sisteminde elektrik enerjisine dönüştürülür. Malzemelerin çok çeşitli fiziksel, kimyasal ve nükleer özellikleri sebebiyle pek çok değişik nükleer reaktör tasarımı mevcuttur. Basınçlı Su Reaktörünün tasarımında reaktör kalbindeki yakıtlardan ısı enerjisi basınç altında tutularak kaynaması engellenen su ile çekilmektedir. Çekilen ısı enerjisi buhar üreteçlerinde ikinci devredeki suya aktarılmakta böylece üretilen buhar ile türbin-jeneratör sistemi döndürülerek elektrik enerjisi üretilmektedir.
 
İlk Nükleer Tepkimeyi Kim Buldu?
Einstein, 1905 yılında E=mc2 formülü ile fisyon sonucu açığa çıkabilecek enerji konusunda öngörüde bulunmuştu. Daha sonra 1930 yılında bu öngörü deneysel olarak Otto Hahn, Lise Meitner ve diğerleri tarafından doğrulandı. Dünyadaki insan yapısı ilk nükleer reaktör 1942 yılında Enrico Fermi’nin yürüttüğü bir proje sonucunda Amerika Birleşik Devletleri' nin Chicago, Illinois kentinde kuruldu.
Ancak, dünyadaki ilk nükleer reaktörün ortaya çıkışı milyonlarca yıl öncesine dayanmaktadır. Afrika'da Oklo, Gabon’daki bir uranyum madeninde, yeraltı sularının da maden içinde bulunması nedeniyle doğal bir nükleer reaktör oluştuğu ve binlerce yıl ısı ürettiği son yıllarda ortaya çıkarılmıştır.
Her iki reaktör de fisyonu kullanarak ısı üretmiş fakat hiçbiri elektrik üretmemiştir.
Elektrik üreten ilk ticari nükleer güç santralı Shippingport, Pennsylvania'da (ABD) kurulmuş ve 1957'de işletmeye girmiştir. Fisyon kullanılarak üretilen ilk elektrik ise, Aralık 1951'de Arco, Idaho’daki Deneysel Üretken Reaktöründe elde edilmiştir.

Nükleer Enerjinin Dünyadaki Durumu Nedir?
İşletmede olan santralların sayısı: 442 adet
İşletmede olan santralların net gücü: 356.746 MW(e)
Üretilen enerji: 2544 TWsaat
Nükleer enerjinin toplam enerjiye oranı: %16
İnşa halindeki santralların sayısı: 35 adet
İnşa halindeki santralların net gücü: 27.743 MW(e)
İşletme deneyimi:10586 reaktör-yıl
(Kaynak: Uluslararası Atom Enerjisi Ajansı, Eylül 2002)
 

 

0 YORUMLAR

    Bu KONUYA henüz yorum yapılmamış. İlk yorumu sen yaz...
YORUM YAZ